ClpC

From SubtiWiki
Revision as of 10:57, 16 June 2015 by Jstuelk (talk | contribs) (Biological materials)
Jump to: navigation, search
  • Description: ATPase subunit of the ATP-dependent ClpC-ClpP protease, involved in competence development, heat shock regulation, motility, sporulation, protein quality control, biofilm formation
Gene name clpC
Synonyms mecB
Essential no
Product ATPase subunit of the ClpC-ClpP protease
Function protein degradation
positive regulator of autolysin (LytC and LytD) synthesis
Gene expression levels in SubtiExpress: clpC
Interactions involving this protein in SubtInteract: ClpC
Metabolic function and regulation of this protein in SubtiPathways:
clpC
MW, pI 89 kDa, 5.746
Gene length, protein length 2430 bp, 810 aa
Immediate neighbours mcsB, radA
Sequences Protein DNA DNA_with_flanks
Genetic context
ClpC context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
ClpC expression.png















Categories containing this gene/protein

proteolysis, sporulation proteins, general stress proteins (controlled by SigB), heat shock proteins, phosphoproteins

This gene is a member of the following regulons

CtsR regulon, SigB regulon, SigF regulon

The gene

Basic information

  • Locus tag: BSU00860

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

  • A mutation was found in this gene after evolution under relaxed selection for sporulation PubMed


The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: ATPase/chaperone
  • Protein family: mecA family (according to Swiss-Prot) clpA/clpB family. ClpC subfamily (according to Swiss-Prot), AAA+ -type ATPase (IPR013093) InterPro (PF07724) PFAM

Targets of ClpC-ClpP-dependent protein degradation

Extended information on the protein

  • Kinetic information:
  • Modification:
    • phosphorylated on Arg-5 and Arg-254 PubMed
  • Effectors of protein activity:
  • Localization:
    • cytoplasmic polar clusters, excluded from the nucleoid, induced clustering upon heatshock, colocalization with ClpP Pubmed
    • forms foci coincident with nucleoid edges, usually near cell poles PubMed

ClpC.jpg

Database entries

  • KEGG entry: [3]
  • E.C. number:

Additional information

  • subject to Clp-dependent proteolysis upon glucose starvation PubMed

Expression and regulation

  • Additional information: subject to Clp-dependent proteolysis upon glucose starvation PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 1157 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 2624 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 711 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 495 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 617 PubMed

Biological materials

  • Expression vector:
  • lacZ fusion:
  • GFP fusion: C-terminal GFP fusions (single copy, also as CFP and YFP variants) available from the Hamoen Lab
  • two-hybrid system:

Labs working on this gene/protein

Your additional remarks

References

Reviews

Noël Molière, Kürşad Turgay
General and regulatory proteolysis in Bacillus subtilis.
Subcell Biochem: 2013, 66;73-103
[PubMed:23479438] [WorldCat.org] [DOI] (P p)

Aurelia Battesti, Susan Gottesman
Roles of adaptor proteins in regulation of bacterial proteolysis.
Curr Opin Microbiol: 2013, 16(2);140-7
[PubMed:23375660] [WorldCat.org] [DOI] (I p)

Noël Molière, Kürşad Turgay
Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis.
Res Microbiol: 2009, 160(9);637-44
[PubMed:19781636] [WorldCat.org] [DOI] (I p)

Janine Kirstein, Noël Molière, David A Dougan, Kürşad Turgay
Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.
Nat Rev Microbiol: 2009, 7(8);589-99
[PubMed:19609260] [WorldCat.org] [DOI] (I p)

Dorte Frees, Kirsi Savijoki, Pekka Varmanen, Hanne Ingmer
Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria.
Mol Microbiol: 2007, 63(5);1285-95
[PubMed:17302811] [WorldCat.org] [DOI] (P p)

Original Publications